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Abstract 

Multifragmentation in Au-?-Au collisions is investigated at incident energies in the range 100-400 MeV per nucleon 
by means of a recently developed quanta1 Langevin model. The inclusion of quantum fluctuations enhances the average 
multiplicity of intermediate mass fragments, especially in central collisions. This is mainly because the excitation energies 
of fragments are reduced due to the quanta1 behavior of intrinsic specific heat. 

1. Introduction 

One of the main goals of heavy-ion physics is to ex- 
plore the various phases of nuclear matter and achieve 

an understanding of the associated phase transitions. 
At intermediate energies, the nuclear liquid-gas phase 
transition is of primary interest, and the efforts to un- 
derstand this phenomenon have intensified following 
the recent extraction of a caloric curve of hot nuclear 
matter [l] suggesting that the phase transition is of 
first-order and occurs at a temperature of 4-5 MeV. 
The first-order nature of the phase transition may lead 

to an enhancement of fragment formation [ 2-41, since 
the rapid expansion following an energetic nucleus- 
nucleus collision causes a transformation from a hot 
to a supercooled gas phase. The resulting dilute sys- 
tem is mechanically unstable and fragments are there- 
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fore likely to be formed, in a manner similar to the 
formation of water drops. 

The experimental exploration of nuclear phase tran- 
sitions must rely on nuclear collisions, and it is there- 
fore necessary to invoke dynamical models in the in- 
terpretation of the data. In addition to the complica- 
tions arising from the non-equilibrium character of the 
collision dynamics, it is also important to ensure that 
the models employed take due account of the quanta1 
nature of the nuclear system. 

In order to illustrate this important point, we note 
that the nuclear liquid-gas phase transition differs sig- 
nificantly from the usual liquid-gas phase transition in 
macroscopic matter. The largest difference lies in the 
role played by quanta1 statistics. In the case of usual 
macroscopic matter, the total energies are to a good ap- 
proximation linear functions of the temperature in both 
the liquid and gas phases. Thus the effective number 
of degrees of freedom is essentially constant in each 
phase. In contrast to this familiar situation, the liquid 
phase of a nucleus exhibits an increase in the number 
of activated degrees of freedom as the temperature is 
raised. For example, the excitation energy of a nucleus 
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at low temperature increases like E* = aT2 (where the 
level density parameter is a z A/( 8 MeV)), which 
is a typical quantal behavior, while the gas phase is 
characterized by the usual classical relation E*/A = 
3T/2. The two curves intersect at T M 12 MeV, which 
is much higher than the suggested transition temper- 
ature. This indicates that the quantal statistical nature 
of the nuclear system plays an important role for the 

phase transition and, presumably, for the associated 

nuclear multifragmentation processes. 
To take approximate account of the quanta1 fea- 

tures of the evolving nuclear system, we augment 
the socalled Quantum Molecular Dynamics (QMD) 
model [5-71 by a stochastic term given by the re- 

cently developed quanta1 Langevin model I: 8,9]. The 
QMD model describes the nuclear many-body sys- 
tem in terms of a product wave-function of gaus- 
sian wavepackets for the individual nucleons and has 
been successful in accounting for a variety of colli- 
sion observables, such as collective flow and particle 

production [ 51. The QMD model and its antisym- 
metrized versions, Antisymmetrized Molecular Dy- 
namics (AMD) [ lo] and Fermionic Molecular Dy- 
namics (FMD) [ 111, have also met with some suc- 
cess in describing fragment production [5,7,10,12- 
141. The fragments formed in these molecular dynam- 
ics calculations are generally far too excited to remain 
intact, so the subsequent decay must be accounted for 
in order to extract the yield of bound fragments that are 
measured experimentally. This combination of molec- 
ular dynamics and subsequent (usually statistical) de- 
cay calculation may give us a correct picture of frag- 
ment formation when the source of fragments is lim- 
ited to one compound nucleus or excited projectile-like 
and target-like fragments. However, when the copious 
intermediate-mass fragments (IMF) appear simulta- 
neously, the above fragment formation mechanism be- 
comes dubious. For example, although the calculated 
IMF multiplicity without the subsequent decay seems 
to reproduce the data reasonably [ 13,141, the decay 
processes largely eliminates the IMF yield [ 141. 

We suggest that part of the reason for this consis- 
tent shortcoming of the entire class of QMD-like mod- 
els may be found in the fact that the model is effec- 
tively classical, since the equations of motion for the 
wavepacket parameters have been derived by a stan- 
dard variational principle. The resulting description is 
then the dynamics of the wavepacket centroids and the 

inherent quantum fluctuations are neglected. The pres- 
ence of quantum fluctuations is signaled by the fact 
that the wavepackets are not energy eigenstates. This 
basic feature generally causes the expectation value of 
the Hamiltonian to fluctuate in the course of time. 

In order to remedy the situation, a quantal Langevin 
model was recently developed [ 8,9]. The Langevin 
force enables the wavepacket system to explore its en- 
tire energy spectral distribution, rather than being re- 
stricted to its average value, and it leads to a much 
improved description of the quantum statistical fea- 
tures. In particular, the resulting specific heat now 
exhibits the characteristic evolution from a quantum 
fluid towards a classical gas as a function of tempera- 
ture [ 8,9], in contrast to the behavior emerging with 
the usual treatment. Since a change of a fragment’s 
specific heat is associated with a change in its statis- 
tical weight, the effect is clearly relevant for the frag- 

ment production problem. 
The key features of the results obtained with the 

quanta1 Langevin model are the occurrence of larger 
fluctuations and an enhancement of stable configu- 
rations, such as bound fragments, as a result of the 
need to take account of the spectral distortion of the 
wavepackets. The former feature arises from the fact 
that the wave packets are populated according to the 

strength of the eigencomponent for the given energy, 
and therefore the wavepacket parameters can have 
larger fluctuations than when the expectation value of 

the energy is conserved. On the other hand, in order 
to project out the appropriate energy component from 
the wavepacket, it is necessary to take account of its 

internal distortion. The combination of these two ba- 
sic features is then expected to enhance the IMF yield 
at the final stage: while the larger fluctuations allow 

the system to explore more configurations and thus 
enhances the yield of primary fragments, the latter sta- 
bilizes the fragments, since the compensation for the 
quantum distortion effectively acts as a cooling mech- 
anism. 

In our previous work [ 91, we have applied the quan- 
tal Langevin model to a simple soluble example and 
have shown that it leads to the correct quantal micro- 
canonical equilibrium. However, in order to apply this 
model to actual nuclear collisions, the treatment of the 
center-of-mass cluster motion must be suitably mod- 
ified. In the QMD and AMD treatments, the single- 
particle wave function is represented by a gaussian 
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wave packet with a fixed width. Then the center-of- 
mass wave function of each cluster is also a gaussian 
wave packet and, accordingly, it has zero-point ki- 

netic energy as well as an energy fluctuation dependent 
on the velocity. Within the framework of the quanta1 
Langevin model, this energy fluctuation causes a quan- 
tal fluctuation of the CM motion of the cluster even if 
it is well separated from other clusters and nucleons. 
This phenomenon reflects the expansion of a localized 
free wave packet and should be eliminated, as is usu- 
ally done in Hartree-Fock and AMD calculations, for 
example, before the binding energy is calculated. In 
order not to modify the Q-values in the fragmentation 
process, the cluster CM motion must also be removed 
in the dynamical evolution, as was already discussed 
in Refs. [ 10,151. Therefore, we have removed the en- 

ergy fluctuation of the cluster center-of-mass motions 
as well. This can be accomplished by considering the 
motion of the individual nucleon constituents relative 
to to the local collective velocity. 

In this letter, we have included the quanta1 Langevin 
force into the framework of QMD. Although we have 
formulated the quanta1 Langevin model within the 
AMD framework, the appearance of the quantal Auctu- 
ation originates in the wave-packet nature of the many- 

body state and is therefore a general phenomenon. 
Thus the basic features of the model also apply to 
QMD which is easier to apply to heavier systems and 
we focus our attention on the fragmentation process in 
197Au+197Au collisions. In this system, the total num- 

ber of nucleons is so large that the statistical proper- 
ties are expected to play a major role. In addition, the 
multiplicities of intermediate mass fragments are mea- 
sured at incident energies of 100, 250, and 400 MeV 
per nucleon and their impact parameter dependence is 
also deduced [ 41. The IMF multiplicities reach up to 
around ten, which is the largest number observed so 

far. 

2. Quanta1 Langevin model at fixed temperature 

We first give a condensed description of the recently 
introduced quantal Langevin model for the situation 
when the system can be regarded as being in thermal 
equilibrium at a given temperature. 

The treatment seeks to take account of the energy 
fluctuations present in a system being described in 

terms of many-body wave packets. As we have already 
discussed in detail in Ref. [ 91, this inherent energy 
dispersion modifies the statistical weight relative to 
the naive classical form, 

Wp(Z) = (Zl exp(-Pfi)IZ) $ exp(-P3-I) . 

(1) 

Here X = (Zl filZ) is the expectation value of the 
Hamiltonian in the given wave-packet state IZ) and 
thus the last quantity represent the usual classical 
statistical weight. The complex parameter set Z = 

(21, zz,. . . ZA} is related to the phase space coordi- 
nates in QMD, zn = r,/2Ar + ip,/2Ap, where Ar 
and Ap are widths of wave packet. By invoking the 
harmonic approximation, it is possible to obtain a 
good description of the statistical weight by means of 
a simple “free energy”, 

F,(Z) z -logWp(Z) = g (1 -exp(-PO)) , 

(2) 

where D = 4/E* is the effective level spacing. (The 
energy of the wave packet relative to its ground state 
is denoted by E” and al is the associated variance.) 

The relaxation towards this approximate quantal 
equilibrium can be described by the following Fokker- 
Planck equation for the distribution qb(Z) of wave- 

packet parameters, 

W -= 
Dt 

(4) 

where qi represents either r, or p,,. It is easy to 
check that the statistical equilibrium distribution, 
&s = exp( ---Fb) , is a stationary solution to the above 
Fokker-Planck equation. Moreover, when the classical 
statistical weight is employed (i.e. when $ = p3-t) , 
the drift and the diffusion coefficients of the Fokker- 
Planck equation satisfy the usual Einstein relation, 
corresponding to (Y = 1 in (5). On the other hand, 
when the quanta1 statistical weight obtained with the 
harmonic approximation is used, Eq. (2)) the relation 
is modified. For example, if the effective level spacing 
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D does not depend strongly on the wave-packet pa- 
rameters, the drift coefficient reduced by the factor cy, 

1 - exp(-PD) 
a= 

PD * 
(9 

Since (Y is smaller than unity, the resulting Fokker- 
Planck equation gives smaller friction, thus in effect 
relatively larger fluctuations will arise. 

It is convenient to solve the Fokker-Planck transport 

equation by means of a Langevin method. Within the 
framework of QMD the Langevin equation becomes 

@=f -aPMP.v+gP.C$P) (6) 

~=v+aPM’. f +g’.6$‘, (7) 

d7-I 
v=- ( 

dP 
f2, (8) 

&fp=gp.gp, M’=g’.g’. (9) 

Here P and p are the phase-space centroid parameters 

for the wave packet and 5 is used to denote random 
numbers drawn from a normal distribution with two 
a variance equal to two. In these equations, we have 
omitted the diffusion-induced drift term and that part 
of the mobility tensor that connects r and p. 

2.1. Energy fluctuation 

The key quantity in the quantal Langevin treatment 
is the energy dispersion a; within each wave packet. 
In Refs. [ 8,9], the following approximate form was 
derived, a:. 

= c [Ar2 f, . f,, + Ap2 v, . vn] . 

Here the matrix C arises from the antisymmetrization 
and, accordingly, it is the unit matrix in QMD. There 
are two problems in the application of the above ex- 
pression to dynamical processes within the framework 
of QMD, such as nucleus-nucleus collisions. The first 
concerns the spurious zero-point center-of-mass mo- 
tion of clusters and the second arises from the Pauli 
blocking, as we shall now discuss. 

The energy fluctuation becomes larger when the 
wave packet moves faster, as should be the case, and 
it results from the zero-point kinetic energy of the 
fragment center of mass. The expression is adequate 

when the configuration volume is compact and all the 
degrees of freedom can be treated as wave packets. 
However, as is already discussed in Refs. [ 10,151, this 
zero-point CM kinetic energy is spurious and should 
be removed from the Hamiltonian. It must then also 
be removed from the energy fluctuation. In addition, 
it may be unreasonable to carry out the integral over 

all the parameter space near the given value, since no 
Pauli blocking effect is taken account of in the phase 
space parameters themselves in QMD. Then, it appears 
more physical to reduce the energy fluctuation accord- 
ing to the appropriate Pauli blocking factor. In order 
to satisfy these two requirements we have adopted the 
following form of the energy fluctuation, 

o-i = c Cl- fd2 W2 f, . f, 
n 

+ Ap2 (vn - un> . (vn - &I . 
1 

(11) 

Ui = x j CijVj . 
c 

(12) 

The additional factor ( 1 - fn)2 represents the Pauli 
blocking for small changes, where fn is the Wigner 
function. Here vj denotes the velocity of the nucleon j 
and the local flow velocity ui is obtained by perform- 
ing a suitable smoothing, using Cij = exp( -r$/4Ar2) 
with Ni = Cj cij. The quantity entering in the energy 
fluctuation is then v - u, the velocity of a wave packet 
relative to the local collective flow, which represents 
those degrees of freedom having a wave packet nature. 

On the other hand, the collective velocity U, which 
is thought of as the cluster velocity, represents the 
degrees of freedom having a classical nature. The drift 
term of Eq. (6) is therefore modified accordingly, 

$= f-a$MP.(v-u) -/3Mp.u +gp.$. (13) 

It should be noted that when the energy fluctuation 
g? is small, the above Langevin equation leads to the 
normal (classical) Langevin equation, p = f - pMp . 
v+gP.$. Thi s situation is realized when all the 
fragments are well separated and the intrinsic energy 
fluctuation is very small (i.e. all the fragments are 
close to their ground state). 
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In addition to modifying the statistical weight, the 
energy fluctuation also modifies the meaning of wave 
packet ensemble, since it causes a thermal distortion of 
the spectral strength distribution of the energy eigen- 
components within each wave packet. The distortion 
operator exp ( --P&/2) reduces the expectation value 
of the Hamiltonian in the particular state 1 Z). The ther- 

mal distortion is calculated by replacing the time t by 
the imaginary time ir in the equation of motion. The 

resulting “evolution” is then described by a cooling 
equation, 

( 14) 

with which the state should be propagated until r = 
h/3/2. Here, v is again replaced by v - II in order to 
leave the collective (or cluster) motion unaffected. 

2.2. Fragmentation atfied temperature 

We have incorporated the above described quanta1 
Langevin force into the QMD model. In the present 
implementation, the Gogny interaction [ 161 is used as 
the effective interaction. In addition, a correction for 
the fragment zero-point kinetic energy is included as 
described in Refs. [ 10,151. Moreover, since the quan- 
tal Langevin force is sensitive to the minimum state 
of the given Hamiltonian, a Pauli potential [ 15,171 to 
guarantee that the nuclear sizes and bindings are rea- 
sonably reproduced by the model. 

Fig. 1 shows the resulting mass distribution of frag- 
ments as obtained at various temperatures having a 
low average density (to ensure that the fragments are 
well separated). The results of the quanta1 Langevin 
model agree well with the grandcanonical calculation 
when T 2 4 MeV. At lower temperatures, probably 
because of the limited functional space of QMD, both 
the quantal Langevin model and the classical Langevin 
model fail to describe the population of the heaviest 
fragments which in turn may lead to the overestima- 
tion of the proton multiplicity. 

It is interesting to note that the mass distribution 
changes its appearance in the temperature region T = 
4 - 6 MeV. At lower temperatures, a large part of 
the nucleons are bound in large fragments, while at 
higher temperatures, the lighter fragments grow abun- 
dant. This behavior reflects the transition from the ex- 
citation of various collective modes of heavy nuclei to 
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Fig. 1. Mass distribution in a canonical ensemble of 40 nucleons. 

Circles and triangles show the calculated results of QMD at the 

indicated temperatures T with ( LY < 1) and without ( LY = 1) the 
quanta1 modification. As an instructive reference for the quantal 
calculation, we also show the grand canonical results (solid lines) 
based on a simple statistical treatment [ 181. 

the realization of fragmentation degrees of freedom. 
In our previous work [ 8,9], we have shown that this 
feature can be also seen from the relationship between 
temperature and excitation energy. The maximum spe- 
cific heat is obtained for the temperature T - 4 MeV, 
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primarily because the fragment degrees of freedom are 
activated rapidly as T is increased above this value. 

3. Application to nuclear collisions 

In order to apply the treatment described above to 

actual nucleus-nucleus collision processes, some im- 
portant modifications of the QMD model are required. 
In the usual Qh4D treatment, the expectation value of 
the Hamiltonian is a constant of motion (since the 

equations of motion for the wavepacket parameters 

have been derived from a standard variational princi- 
ple). When the quantum fluctuations are taken into 
account, the inherent energy fluctuation within each 

many-body wavepacket makes it necessary to include 
wavepackets having different energy expectation val- 

ues. At first, this feature might seem unreasonable as 

it appears to violate energy conservation. However, 
an energy eigenstate can be constructed as a superpo- 
sition of wavepackets whose energy expectation val- 
ues (the diagonal matrix elements of the Hamiltonian 
operator) are not necessarily the same as the energy 
eigenvalues. This feature grows more prominent in the 
reaction region and there is therefore no reason to ex- 
clude wavepackets with different energy expectation 
values in the dynamics, especially during the strongly 
interacting stage. 

3.1. Quanta1 Fokker-Planck equation at a Jixed 
energy 

By proceeding as in the case considered above 
where the temperature is given, it is possible to derive 
a quanta1 Fokker-Planck equation for situations in 
which the energy is specified, such as the evolution 
of an isolated system. The equilibrium distribution is 
now a microcanonical ensemble, with a corresponding 
statistical weight for each wave packet, 

(7i/D>EfD 
o: I’(E/D+ 1) 

exp( -X/D) . (1% 

The last relation assumes that the spectral function is 
given by a continuous Poisson distribution. The drift 
coefficient can then be readily calculated, 

(16) 

(18) 

It is interesting to note that the drift term acts to re- 
store the energy: when the Hamiltonian 7-L is greater 

than the given energy E, the drift term reduces the 
Hamiltonian (since p7_1 is positive in this case and the 
mobility tensor is always positive definite. Further- 
more, since the phase volume with larger X is larger, 
the dynamical trajectory usually goes through the re- 
gion with 7f > E. Therefore, the drift term generally 
reduces the excitation energy of fragments in the fi- 
nal stage of collision. In the asymptotic region where 
all the fragments are well separated and all of them 

are sufficiently cold, the energy fluctuation becomes 
small and the energy expectation value converges to 
the given value. 

Thus, the basic features of the quanta1 Langevin 
model remain the same also in the case of a fixed 
energy, namely larger fluctuations and intrinsic dis- 
tortion. To show this important point, we introduce 

the state-dependent microcanonical inverse tempera- 
ture & whose average over the entire phase space 
with the weight pE( Z) gives the global microcanoni- 
cal temperature, 

PB(Z) - -& logp,(Z) = --& FE(Z) 

c ; lo&Y/E) . (19) 

The last relation holds when we employ the continuous 
Poisson distribution and the effective level spacing D 
is small compared to 7-L and E. In terms of this PE, we 
have& = LYE& ,withcu, = (l-exp(-&D))/P=D. 
Thus the drift term is reduced by the factor CY~ com- 
pared to the normal Einstein relation, in analogy with 
the canonical case of a fixed temperature. 

3.2. Mobility tensor 

Although the preceding statistical discussion gives 
the form of Fokker-Planck equation, including the 
modified fluctuation-dissipation relation, the mobil- 
ity tensor must be determined separately. Although 
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the mobility tensor does not affect the equilibrium 
properties, it is important in a dynamical scenario 
since it determines the time scale. As we discussed in 

Refs. [ 8,9], this mobility tensor essentially represents 
the transition rate from the current dynamical state. 
This transition rate should be described by the residual 
interaction between nucleons, i.e. the off-diagonal part 

of the original Hamiltonian operator. In the present 
study, we have used the following relatively simple 

mobility tensor, 

Mii,n,j=g&*sijAr2 % (l-_fri) 3 (20) 

Mii,nlj =g 'n,t'~j Ap2 9 (1 - fn> 2 (21) 

(4J2=Ar2 f;f, , (22) 

(cT;)~ = Ap2 (v, - u,) . (ZJ, - u,) . (23) 

Since the transition induced by the quanta1 Langevin 
force is of one-body nature, we have incorporated the 
blocking factor 1 - fn. 

3.3. Results for Au+Au collisions 

We have applied the quantal Langevin model to col- 

lisions of two gold nuclei at incident energies of 100, 
250, and 400 MeV per nucleon. In addition to the 
Hamiltonian discussed above, an energy-conserving 
two-body collision term is also included. The aver- 
age multiplicity of intermediate-mass fragments cal- 
culated for ‘97A~+197A~ is shown in the upper part 

of Fig. 2. The treatments with and without the quantal 
Langevin force agree with each other qualitatively. For 
example, the IMF multiplicity has the peak at central 
collisions at E/A = 100 MeV, while the peak moves 
to finite impact parameter at higher incident energies. 

Since the fragments extracted from the dynamical 
calculations are still excited, it is necessary to include 
the subsequent statistical decay before contact with 
experiment can be made. The lower part of Fig. 2 
shows the resulting average IMF multiplicity after the 
statistical decay chains have deexcited the fragments 
to below the light-fragment separation energy (we 
shall consider such relatively cold fragments as be- 
ing in their ground states). As the statistical decay 
model (SDM) , we have used the evaporation model of 
Ptihlhofer [ 191. In the case of QMD without quanta1 
Langevin force, the excitation energies of the primary 

fragments are large enough to largely eliminate the 
IMF component from the final mass distribution. This 

tendency is more clear for central collisions, where the 

fragments are likely to be highly excited. On the other 
hand, QMD with the quantal Langevin force reduces 

the excitation energies of the primary fragments be- 
cause of the quantum-statistical nature of the intrinsic 
degrees of freedom. As a result, the difference between 

the average multiplicities before and after the statis- 
tical decay is less than one in the quantal Langevin 

model. 
Although the difference between the two models 

seems small at E/A = 100 MeV, the IMF formation 
mechanisms are quite different. This feature becomes 

more clear when the ground state population is ex- 

amined. With the quanta1 Langevin force, the primary 
fragments emerge relatively cold as a results of the 
drift term (the intrinsic distortion referred to above), 
while there is no other way than nucleon emission 
to cool fragments in the normal QMD model. Thus, 
the ground-state IMPS are more easily formed in the 
quantal Langevin model. A large part of the stable 
IMFs are created in the dynamical stage in the quanta1 
Langevin model, whereas almost all the IMFs that ap- 
pear with the usual QMD treatment owe their stability 
to the emission of particles during in the statistical de- 
cay stage. Such a difference can, in principle, be sub- 
jected to measurement by exploiting the momentum 
correlation of the fragments. 

4. Concluding remarks 

In this paper, we have adapted the recently devel- 
oped quanta1 Langevin model to simulations of nuclear 
collisions by embedding it into the widely used Quan- 
tum Molecular Dynamics model in which the individ- 
ual nucleons are described by gaussian wave packets. 
The essential modification arises from the fact that the 

nuclear collision proceeds in isolation, so it is appro- 
priate to consider the energy rather than the tempera- 
ture to be fixed. 

The essential effect of incorporating the quantal 
Langevin model is that the system exhibits larger fluc- 
tuations and the degree of excitation of the emerg- 
ing fragments is smaller. These two features conspire 
to enhance the production of intermediate-mass frag- 
ments. 
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Fig. 2. IMF multiplicity before and after statistical decay. Circles and triangles indicate QMD results at given energies with and without the 

quantal Langevin force, respectively. The upper and lower parts show the distributions before and after the statistical decay (SDM) [ 191 

calculation, respectively. The experimental data [4] are shown by solid diamonds. Dotted lines show the experimental data using a scaled 
impact parameter assuming a maximum impact parameter of 10 fm. The detector efficiency is not taken into account in the calculation. 

The usual molecular-dynamics treatment leads to 

primary fragments that are typically sufficiently ex- 
cited to emit nucleons. It is therefore essential to add 
an “afterburner” that subjects the unstable fragment to 
statistical decay. This process causes a strong suppres- 

sion of the IMFs, and a corresponding enhancement 
of lighter fragments. Therefore, even though the usual 
dynamics leads to a large IMF multiplicity at the end 
of the dynamical stage [ 13,141, the final yields are 
not necessarily that large [ 141. On the other hand, the 
quantum Langevin treatment leads to fragments hav- 
ing a relatively small degree of excitation and, conse- 
quently, a larger proportion of them survive the statis- 
tical decay. 

The starting point for the present work was the fact 
that wave packet molecular dynamics displays classi- 

cal statistical features, an observation that has stimu- 
lated lively discussion [ 8,9,15,20-231. In our previ- 
ous work [9], we demonstrated that when the mean 
energy is fixed molecular dynamics in a common har- 
monic oscillator potential may give the same obser- 
vation with and without the quanta1 Langevin force. 
However, this coincidence depends strongly on the 
well-bound nature of the system and the calculated re- 
sults in the present paper suggest that additional fluc- 
tuations are necessary to achieve a satisfactory molec- 
ular dynamics description of fragmentation processes. 
A similar conclusion has been reached by Ono and 
Horiuchi [ 241. They included additional fluctuations 
to mimic the Vlasov dynamics in AMD, and also per- 
formed a constrained distortion of the wave function 
at each point in time. The combined effect of this ap- 
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preach seems to be rather similar to the two main fea- 
tures of the present quantal Langevin model. 

Before it is possible to quantitatively assess the role 

played by the quantum nature of the system, it is nec- 
essary to resolve a number of important ambiguities in 
the quantal Langevin dynamics. For example, the mo- 
bility tensor adopted in this present work is based more 
on physical intuition than on first principles. Another 
ambiguity concerns the residual two-body collisions, 
since the quantal Langevin term causes the level den- 
sity of the final state to differ from the classical one. 
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and J. Aichelin, Phys. Rev. C 39 (1989) 1402. 
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However, taken at face value, our results for Au+Au 
collisions indicate that the inclusion of the quantum 
fluctuations in the wavepacket dynamics leads to a 

significant increase in the production of massive frag- 
ments with low excitation. Although the experimen- 
tal data are not yet reproduced quantitatively, the im- 
provement is significant over the results obtained with 

the usual treatments in which the quantum fluctua- 
tions are ignored. This general qualitative result sug- 
gests that the underlying quantum nature of the nu- 
clear many-body system may indeed play a significant 
role in fragmentation reactions. 
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